un ensemble de forces de van der Waals à caractère attractif. Cependant, contrairement à la structure du dérivé méthylé, on observe ici un certain nombre de contacts à caractère répulsif entre les cycles A et C de molécules non homologues: $\mathrm{O}(33) \cdots \mathrm{C}(62)$ 3,29; $C(3) \cdots C(62) 3,43 ; C(53) \cdots C(12) 3,47 \AA$.
La projection de la structure cristalline suivant l'axe b est représentée sur la Fig. 3.

Les auteurs remercient M. Bucourt de la Société Roussel Uclaf qui leur a soumis le problème.

Références

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Busetta, B., Comberton, G., Coursellle, C. \& Hospital, M. (1974). Acta Cryst. B30, 2759-2761.

Acta Cryst. (1975). B31, 2294

Contributions to the Chemistry of Mo and W.

 XIV.* The Mo-O Bond Length/Bond Order Relationship. A Systematical Treatment \daggerBy F. A. Schröder
Gmelin-Institut der Max-Planck-Gesellschaft, 6000 Frankfurt/M. 90, Varrentrappstr. 40/42, Germany (BRD)

(Received 25 March 1974; accepted 28 February 1975)

Abstract

$\mathrm{M}-\mathrm{O}$ and $\mathrm{O}-\mathrm{M}-\mathrm{O}$ bond-distance values have been collated from all the relevant crystal structure determinations reported so far. The values could be separated into groups which gave characteristic distances on averaging. Based upon four fundamental coordination polyhedra all 'types' of Mo-O distances could be classified. After four points of definition were established the bond distance/bond order correlation equation $d_{\mathrm{Mo}-\mathrm{o}}=1 \cdot 87_{4}-0 \cdot 60_{0} \log \mathrm{BO}_{\mathrm{Mo}-\mathrm{o}}$ was obtained. For all known, totally O-coordinated polyhedra the sums of the bond orders were calculated, permitting a differentiation between the several differently distorted coordination octahedra of Mo in collective structures, as in e.g. $\mathrm{Mo}_{4} \mathrm{O}_{11}$.

Introduction

Cotton \& Wing (1965a) have proposed a correlation diagram between the length of a Mo-O bond and the corresponding bond order. This was done on the assumption that the degenerate $4 d$-orbital levels are split in an octahedral field of ligands to leave the three $t_{2 g}$ orbitals for π bonding. This led to further assumptions. Where only one terminal O atom $\left(\mathrm{O}_{t}\right)$ is bonded to a Mo atom this bond was given a bond order of 3 , corresponding to one σ bond plus two π bonds. In those compounds in which two cis $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ bonds occur, each bond was given a bond order of 2.5 (one σ and $\frac{3}{2} \pi$ bonds). In the compounds of the type MoO_{3}. dien (dien $=$ diethylenetriamine) $($ Cotton \& Elder, 1964) where three $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ occur, each bond was given a bond order of 2 (one σ and one π bond). The same bond order was attributed to each $\mathrm{Mo}-\mathrm{O}$ bond in the MoO_{4}^{2-} complex ion. These arrangements are shown in Fig. 1. The Mo-O distances which were attributed to these bond orders were $1.65,1.69$ (and 1.70), 1.736 (and 1.77) \AA, respectively. A bond order of 1 was attributed by these authors to a distance of $2.08 \AA$, which was deduced from the Mo-O distance of coordinated oxalato

[^0]groups in the compounds $\mathrm{K}_{2}\left\{\left[\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right\}$ and $\mathrm{Ba}\left\{\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\} .3 \mathrm{H}_{2} \mathrm{O}\right.$.

Later (Le Carpentier, Mitschler \& Weiss, 1972), it was concluded that a distance of $1.917(7) \AA$ should correspond to 'a bond order close to one' i.e. a pure Mo-O (σ) single bond.

A further consideration by Perloff (1970) achieved no progress in the understanding of the Mo-O bond distance/bond order relationship. The recent general treatment by Brown \& Shannon (1973), which gives an excellent review of earlier papers on this problem, does not include the case Mo-O but only the related system V-O.

We have been investigating (Schröder, 1973) the results of all crystal structure determinations of adequate accuracy of compounds containing Mo-O bonds. With few exceptions, all these compounds contain Mo in the oxidation state $+6,+5$ or, formally, states between the two. From these data, characteristic values of bond distances can be derived, which give the first consistent picture of the structural aspects of Mo-O bonding.

Results

(I) Derivation of characteristic distances
(A) Terminal Mo-O bonds

Cotton \& Wing (1965a) showed from structural data that Mo-Ot bonds, having Mo in different oxidation states, can be 'scaled' upon one another. They found

Table 1. $d\left(\mathrm{Mo}-\mathrm{O}_{t}\right)$ in \AA for structures of compounds containing only one $\mathrm{O}_{t}\left(\mathrm{O}_{t}=\right.$ terminal oxygen $)$ per Mo
Figures in brackets in this and all following tables are standard deviations in units of the last digit. Remarks: (a) This value was not used for calculating the mean of all distances (b) This structure determination is incomplete (c) This structure determination corresponds to an R value of $0 \cdot 1-0 \cdot 15$; the intensities were determined by film methods (d) The deviation of this value could not be explained in the original paper. $\mathrm{A}=$ ethylenediaminetetraacetato-

Compound	Ref.*	$\begin{aligned} & d(\text { Mo-O) } \exp \\ & \text { Mo VI } \end{aligned}$	Av. dist.	Reduced av. dist.	Remarks
$\mathrm{MoO}_{2} \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	1	$\begin{aligned} & 1.60(3), \\ & 1.63(3) \end{aligned}$	1.62		
$\left(\mathrm{MoO}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right)_{3} . \mathrm{KCl}$	2	$1 \cdot 68$ (1)	$1 \cdot 68$		a, b, c
MoOCl_{3}	3	$\begin{gathered} \text { Mo V } \\ 1.60(2), \\ 1.63(4) \end{gathered}$	$1 \cdot 62$	1.59	Values of two independent structure determinations
MoOBr_{3}	4	$1 \cdot 65$ (1)		$1 \cdot 62$	
$\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCS}_{2}\right)_{2}\right]_{2} \mathrm{O}$	5	$\begin{aligned} & 1.644(28), \\ & 1.649 \text { (29) } \end{aligned}$	1.646	$1 \cdot 62$	
$\left(\mathrm{MoOC}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~S}_{2}$	6	$\begin{aligned} & 1.673(8), \\ & 1.685(8) \end{aligned}$	1.679	$1 \cdot 65$	
$\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{SO}_{2} \mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}$	7	$\begin{aligned} & 1.669(16), \\ & 1.657(19) \end{aligned}$	1.663	1.63	$\mathrm{CN}=5$ (trig. bipyr.)
$\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{SO}_{2} \mathrm{NC}_{4} \mathrm{H}_{8}\right)_{2}$	8	$\begin{aligned} & 1 \cdot 650(30), \\ & 1.779(26) a, d \end{aligned}$		$1 \cdot 62$	$\mathrm{CN}=5$ (trig. bipyr.)
$\mathrm{Mo}_{2} \mathrm{O}_{3}\left[\mathrm{SP}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{4} .2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$		1.647 (14)		1.62 1.64	
$\mathrm{K}_{2} \mathrm{MoOCl}_{50 \mathrm{Cl}} \mathrm{MoOCl}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	10 10	$1.67(4)$ 1.72 (5)		1.64 1.69	a, c, partially bridging
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoOBr}_{5}$	11	$1 \cdot 86$ (3)		1.83	a, b, c
[$\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{As}\right]\left[\mathrm{MoOBr}_{4}\left(\mathrm{OH}_{2}\right)\right]$	12	$1 \cdot 78$ (7)		1.75	a, should be $1 \cdot 62-3 \AA$ according to IR
$\mathrm{Cs}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{~A}\right] .2 \mathrm{H}_{2} \mathrm{O}$	13	1.683 (6)		1.65	See headnote for A
$\mathrm{Na}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\left(\mathrm{O}_{4} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\right] .2 \mathrm{H}_{2} \mathrm{O}$	14	$\begin{aligned} & 1.550(25), \\ & 1.690(25) \end{aligned}$	$1 \cdot 62$	1.59	c, d
$\mathrm{Mo}_{4} \mathrm{O}_{6} \mathrm{Cl}_{4}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{6}$	15	$\begin{aligned} & 1.617(15), \\ & 1.634(16) \end{aligned}$	1.626	1.60	
$\mathrm{MoOCl}_{3}\left(\mathrm{SPPh}_{3}\right)$	90	1.647 (3)		$1 \cdot 62$	
$\mathrm{MoO}_{2} \mathrm{~S}_{2}(l \text {-histidine })_{2} 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$	41	1.686 (6), 1.666 (6) Mo IV	1.676	1.646	
$\underset{\left[\mathrm{ZnCl}_{3} . \mathrm{Az}\right]^{-}}{\left.\left[\mathrm{MoOCl}\left(\mathrm{PhP}_{2}\right)_{2} \mathrm{PPh}_{2}\right)_{2}\right]^{+}}$	16	$1 \cdot 69$		$1 \cdot 62$	$\mathrm{Az}=\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$
$\underset{\left[\mathrm{MoOCl}_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]}{\mathrm{MoOCl}_{2}\left(\mathrm{PMee}^{2}{ }^{\text {a }} \text {] }\right.}$	17 18	$1.676(7)$ $1.801(9)$		1.61 1.73	
$\left[\mathrm{MoOCl}_{2}\left(\mathrm{PEt}_{2} \mathrm{Ph}\right)_{3}\right]$	18	$1 \cdot 801$ (9)		173	Me comp.

* References in this and following tables are:
(1) Schulz \& Schröder (1973). (2) Atovmyan \& Krasochka (1971). (3) Drew \& Tomkins (1970a); Ferguson, Mercer \& Sharp (1969). (4) Drew \& Tomkins (1970b). (5) Blake, Cotton \& Wood (1964). (6) Stevenson \& Dahl (1967). (7) Drew \& Kay (1971a). (8) Drew \& Kay (1971b). (9) Knox \& Prout (1969b). (10) Gloviak (1967). (11) Atovmyan, D’yachenko, Lobkovskii (1970). (12) Scane (1967). (13) Spivack \& Dori (1973). (14) Brown \& Jeffreys (1973). (15) Beaver \& Drew (1973). (16) Adam, Gregory, Kilbourn (1970). (17) Manojlović-Muir (1971). (18) Manojlović-Muir \& Muir (1972). (19) Kihlborg (1963/4a). (20) Åsbrink \& Brandt (1971); Krebs (1972). (21) Atovmyan \& Krasochka (1972). (22) Böschen, Buss \& Krebs (1974). (23) Allcock, Bissell \& Shawl (1973). (24) Kihlborg (1963/4b). (25) Kihlborg (1963/4c). (26) Mumme \& Watts (1970). (27) Wilhelmi (1969). (28) Pierce, McKinzie, Vlasse \& Wold (1970); Pierce \& Vlasse (1971). (29) Edwards \& Steventon (1968). (30) Stomberg (1968). (31) Le Carpentier, Schlupp \& Weiss (1972). (32) Stomberg (1970). (33) Grandjean \& Weiss (1967a). (34) Larking \& Stomberg (1970). (35) Stomberg, Trysberg \& Larking (1970). (36) Grandjean \& Weiss (1967b). (37) Kierkegaard \& Longo (1970). (38) Cotton \& Morehouse (1965). (39) Knox \& Prout (1969a). (40) Delbaere \& Prout (1971). (41) Spivack \& Dori (1974). (42) Kopwillem \& Kierkegaard (1969). (43) Fenn (1969). (44) Florian \& Corey (1968). (45) Seleborg (1967). (46) Magarill \& Klevtsova (1972). (47) Seleborg (1966). (48) Gatehouse \& Leverett (1971). (49) Gatehouse \& Leverett (1970). (50) Böschen \& Krebs (1974). (51) Mattes, Müller \& Becher (1972). (52) Atovmyan, Krasochka \& Rahlin (1971). (53) Grandjean \& Weiss (1967c). (54) Kierkegaard \& Holmen (1964). (55) Kierkegaard (1961a). (56) Linnros (1970). (57) Kierkegaard (1961b). (58) Smith \& Ibers (1965). (59) Jeitschko \& Sleight (1973). (60) van der Elzen \& Rieck (1973a). (61) Schröder, Scherle \& Hazell (1975). (62) Atovmyan \& Sokolova (1969). (63) Kojić-Prodić, Ružić-Toroš, Grdenić \& Golič (1974). (64) Atovmyan \& Krasochka (1970). (65) Cotton, Morehouse \& Wood (1964). (66) Atovmyan \& Bokii (1963). (67) Day \& Hoard (1968). (68) Park, Glick \& Hoard (1969). (69) Leciejewicz (1965). (70) Klevtsova \& Klevtsov (1971). (71) Gatehouse \& Leverett (1969). (72) Jeitschko (1972). (73) Abrahams \& Reddy (1965). (74) Abrahams (1967). (75) Abrahams, Bernstein \& Jamieson (1968). (76) Ibers \& Smith (1964). (77) Eick \& Kihlborg (1966). (78) Gonschorek \& Hahn (1973). (79) Jeitschko (1973). (80) Kihlborg (1963/4d). (81) Kihlborg (1963). (82) van der Elzen \& Rieck (1973b). (83) Le Carpentier, Mitschler \& Weiss (1972). (84) Larking \& Stomberg (1972). (85) Perloff (1970). (86) Hedman (1973). (87) Sjöbom \& Hedman (1973). (88) Strandberg (1973). (89) Peytavin \& Philippot (1973). (90) Boorman, Garner \& Mabbs (1974). (91) Cotton \& Elder (1964). (92) Strandberg (1974). (93) Villa, Coghi, Manfredotti \& Guastini (1974). (94) Atovmyan, Tkachev \& Shishova (1974). (95) Fischer, Ricard \& Toledano (1974). (96) Klevtsova, Kozeeva \& Klevtsov (1974). (97) Kihlborg, Norrestam \& Olivecrona (1971). (98) Evans (1968).
that increasing the oxidation number by one causes a shortening of this $\mathrm{Mo}-\mathrm{O}_{1}$ distance by $0.02-0.04 \AA$. We subtracted $0.03 \AA$ from these bond distances in Mo^{v} compounds and $0.07 \AA$ in $\mathrm{Mo}^{\text {IV }}$ compounds to obtain reduced distances comparable with those in $\mathrm{Mo}^{\mathrm{vI}}$ compounds.
(i) Single Mo-O O_{t} bond per Mo atom:* Tables 1 and 2 show all the bonds measured, together with the reduced distances, for structures which contain only one $\mathrm{Mo}-\mathrm{O}_{t}$ bond. The values of both tables are seen to vary over a wide range. However, if the compounds are separated into groups, with respect to the type of the remaining ligand atoms of Mo, the distances within each group fall fairly close together. Table 1 contains those compounds in which some or all the other ligands of Mo are third- or higher-row elements, viz. P, S, Cl or Br. In Table 2 only N, O and F occur as further ligand atoms. To summarize, the $\mathrm{Mo}-\mathrm{O}_{t}$ distances in Table 1 are shorter than those in Table 2, evidently because the other ligand atoms of the compounds of Table 2 cause a greater stress on the total ($\pi-$) electron system around the central Mo, than do those of Table 1. The mean value of the $\mathrm{Mo}-\mathrm{O}_{t}$ distances of Table 1 is $1.62 \AA$ which is fairly well approximated by most of the individual values.

In Table 2 there is a mean value of $1.67 \AA$ for $d(\mathrm{Mo}-\mathrm{O})$ with additional strongly bonded ligand atoms (with $d \pi-p \pi$ interaction) which weaken the π bonding of $\mathrm{Mo}-\mathrm{O}_{t} . d(\mathrm{Mo}-\mathrm{O})$ in MoOF_{4} ($c f$. Table 2) is substantially shorter, because the F ligand atoms with their high electronegativity draw electron density from the oxygen lone-pair electrons into the $\mathrm{Mo}-\mathrm{O}_{2}$ bond which is thus strengthened. The same effect is produced by additional positive partners, as can be seen from the values for $\mathrm{Cs}_{0.25} \mathrm{MoO}_{3}$ (Mumme \& Watts, 1970); this is not yet understood.

[^1]The outlined characteristics of a single $\mathrm{Mo}-\mathrm{O}_{t}$ bond are largely independent of the coordination number (CN) of Mo. As Tables 1 and 2 show, a single $\mathrm{Mo}-\mathrm{O}_{t}$ bond has been found with CN 5 (trigonal bipyramid, tetragonal pyramid), 6 (distorted hexagon) and with several peroxo-compounds in which Mo may have a CN of 7 or 5 .
(ii) Two cis Mo- O_{t} bonds per Mo atom: Table 3 shows the values of all known examples of two cis $\mathrm{Mo}-\mathrm{O}_{t}$. They exclusively comprise $\mathrm{Mo}^{\mathrm{VI}}$ compounds. The first three compounds have no additional π-interacting (or barely $d \pi-d \pi$ interacting) ligands. This leads again to shorter $\mathrm{Mo}-\mathrm{O}_{t}$ distances. The average value of the five distances for these first three compounds is $1 \cdot 68_{3} \AA$. The average value for the other $\mathrm{Mo}-\mathrm{O}_{t}$ of Table 3 is $1 \cdot 70_{5} \AA$. The Mo- O_{t} in two of the three fluorine-containing compounds seem to be also shortened somewhat for the reasons discussed in (i).
(iii) Three $\mathrm{Mo}-\mathrm{O}_{t}(1,2,3)$ and four $\mathrm{Mo}-\mathrm{O}_{1}$ (tetrahedron) per Mo atom: Table 4 shows the values of the corresponding bonds. The resulting characteristic distance of three $\mathrm{Mo}-\mathrm{O}_{t}$ is $1.738(7) \AA$ which is about $0.03 \AA$ shorter than the characteristic average distance of $1.77 \AA$ in isolated MoO_{4}^{2-} ions. Of these, the most reliable value is considered to be that of PbMoO_{4} (Leciejewicz, 1965). Its value, together with those from the other molybdates is also given in Table 4.

In $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ the average over two $\mathrm{Mo}-\mathrm{O}_{t}(2 \times$ $1.684 \AA$) from the octahedron and two $\mathrm{Mo}-\mathrm{O}_{t}(1.708$, $1.752 \AA$) from the linked tetrahedron is $1.707 \AA$, precisely the mean of Table 3 , while the four distances at the tetrahedron give an average of $1.757 \AA$, not far from that obtained in Table 4. In $\alpha-\mathrm{ZnMoO}_{4}$ (Abrahams, 1967) one Mo-O tetrahedron, through the influence of the Zn cations, is so distorted that two distances $[1.707(9), 1.716(10)$ av. $1.711 \AA$] average close to the $1 \cdot 70_{5} \AA$ for the two cis $\mathrm{Mo}-\mathrm{O}_{t}$, while the mean of all the distances is $1 \cdot 76_{1} \AA$, close to the average value of Table 4.

[^2]Fig. 1. Basic types of Mo-ligand coordination polyhedra (schematic drawing). All types may be distorted.
(B) Bridging Mo-O bonds
(i) Derivation from one $\mathrm{Mo}-\mathrm{O}_{t}$ and two cis $\mathrm{Mo}-\mathrm{O}_{t}$: In the previous section, the O_{t} were included in the scheme already used by Cotton \& Wing (1965a) and which is presented in Fig. 1. In this section it will be shown that the same scheme can be used for describing $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ bonds. This can be done by looking at the $\mathrm{Mo}-\mathrm{O}_{t}$ of the coordination polyhedra of Fig. 1 as if they become subsequently $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$. The definitions are: O atoms with neighbouring Mo atoms closer than about $2.4 \AA$ (an upper limiting value, given by the experimental results) are called O_{br}, while O atoms bonded to only one central atom (although they may still act as accepting atoms in hydrogen bridges) are called O_{t}.

In these derivations we expect the following possibilities:
(a) a single $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$
(b) two $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$
(c) one $\mathrm{Mo}-\mathrm{O}_{t}$ plus one $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$.

The possibilities (a) and (b) have never been found, e.g. a dimeric arrangement of the type $\mathrm{X}_{5} \mathrm{Mo}-\mathrm{O}-\mathrm{MoX}_{5}$
does not occur. Only arrangement (c), formally derived from two cis $\mathrm{Mo}-\mathrm{O}_{t}$, is known.

The sum of the average values for two cis $\mathrm{Mo}-\mathrm{O}_{t}$ bonds is $2 \times 1 \cdot 68_{3}=3 \cdot 36_{6} \AA$ or $2 \times 1 \cdot 70_{5}=3 \cdot 41 \AA$. Are there examples for which this last value is also realized by the sum of one $\mathrm{Mo}-\mathrm{O}_{t}$ plus one $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ bond length? The results given (in Table 6) show that this can be so.

The compounds with the shortest Mo- O_{br} together with one $\mathrm{Mo}-\mathrm{O}_{t}$, are given in Table 5. They again contain ligands such as S, Cl, etc. The shortest $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ distance has an average value of $1.83 \AA$. It is found in symmetrical, quasi-symmetrical (both distances equal within σ) bridges, as well as in chains with slightly alternating distances. The distance trans at the O atom to the $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ in such chains is no longer than about $2 \cdot 10 \AA$.

Terminal O atoms with a small electron-donating character are found in three coordination polyhedra of $\mathrm{Mo}_{8} \mathrm{O}_{23}$ (Table 6). Their distances to a second Mo atom are about $2.36 \AA$. Such O_{t} atoms are named quasi- O_{t} or $q \mathrm{O}_{t}$. The average of the sum of $\mathrm{Mo}-q \mathrm{O}_{t}+$ $\mathrm{Mo}-\mathrm{O}_{\text {br }}$ is consequently slightly higher (mean $3 \cdot 51_{1} \AA$).

Table 2. $d\left(\mathrm{Mo}-\mathrm{O}_{t}\right)$ in \AA for structures of compounds containing only one O_{t} per one Mo (a)-(d) as in Table 1; (e) Peroxo compound.

Compound	Ref.	$d(\mathrm{Mo}-\mathrm{O}) \mathrm{exp}$.	Av. dist.	Red. av.dist.	Remarks
Mo VI					
MoO_{3}	19	1.671 (8)			
MoO3 ${ }^{2} \mathbf{2 H 2 O}$	20	$\begin{aligned} & 1.693(2), 2 \times 1.695(2) \\ & 1.698 \text { (2) } \end{aligned}$	$1 \cdot 694$		
$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	21	$\begin{aligned} & 1.60(4), 1.64(4), 1.67(4), \\ & 2 \times 1.71(4), 1.73(4) \end{aligned}$	$1 \cdot 68$		
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{8} \mathrm{O}_{27} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	22	$1 \cdot 697$ (7)	1.697		
$\left[\mathrm{HN}_{3} \mathrm{P}_{3}\left(\mathrm{NMe}_{2}\right)_{6}^{+}\right]_{2}\left[\mathrm{MO}_{6} \mathrm{O}_{19}^{2-}\right]$	23	6×1.676 (5)-1.679 (5)	$1 \cdot 678$		
$\mathrm{Mo}_{8} \mathrm{O}_{23}$	24	1.683 (6), 2×1.695 (6), 1.700 (6)	$1 \cdot 693$		
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	25	$\begin{aligned} & 1.700(25), 2 \times 1.690(30), \\ & 2 \times 1.630(30), 1.650(35), \\ & 1.710(35), 2 \times 1.680(30), \\ & 1.670(25), 3 \times 1.660(25), \\ & 1.640(35), 1.540(35), \\ & 2 \times 1.720(25) \end{aligned}$	1.666		
$\mathrm{Cs}_{0.25} \mathrm{MoO}_{3}$	26	1.59 (4), 1.64 (4)	$1 \cdot 61$		a, c
$\mathrm{Mo}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}=\mathrm{H}_{2} \mathrm{Mo}_{4} \mathrm{O}_{12}$	27	1.687 (30)			
$\mathrm{Mo}_{4} \mathrm{O}_{11.2} \mathrm{~F}_{0.8}$	28	$1 \cdot 650$ (11)			
MoOF_{4}	29	$1 \cdot 65$ (1), 1.62 (1)	$1 \cdot 64$		a
$\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$	30	$1 \cdot 664$ (12), 1.662 (10)	$1 \cdot 663$		$e, \mathrm{CN}=7$
$\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} . \mathrm{H}_{2} \mathrm{O}$	31	1.662 (5)			$e, \mathrm{CN}=7$
$\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	31	$1 \cdot 658$ (12)			$e, \mathrm{CN}=7$
$\left(\mathrm{pyH}^{+}\right)_{2}\left(\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}\right)\right.$	83	1.674 (7)			$e, \mathrm{CN}=7$
$\left(\mathrm{pyH}^{+}\right)_{2}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OOH}\right]_{2}$	83	1.669 (6)			$e, \mathrm{CN}=7$
$\mathrm{K}_{2}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right]$	32	$1 \cdot 678$ (14)			$e, \mathrm{CN}=7$
$\mathrm{K}_{2}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right) \mathrm{F}_{4}\right] . \mathrm{H}_{2} \mathrm{O}$	33	1.64 (3)			$e, \mathrm{CN}=7$
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{~F}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right) \mathrm{F}_{4}\right]$	34	$1 \cdot 67$ (2)			$e, \mathrm{CN}=7$
$\mathrm{K}_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{22}\left(\mathrm{O}_{2}\right)_{2}\right] .8 \mathrm{H}_{2} \mathrm{O}$	84	1.64			c, e
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mog}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$	92	$4 \cdot 713$			
Mo V					
$\mathrm{K}_{2} \mathrm{MoOF}_{5} . \mathrm{H}_{2} \mathrm{O}$	36	$1 \cdot 666$ (26)		$1 \cdot 64$	
MoOPO_{4}	37	$1 \cdot 652$ (5)		$1 \cdot 62$	a, tetrag. pyr.
$\mathrm{Ba}\left(\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$	38	$1 \cdot 70$ (1)		$1 \cdot 67$	
$\mathrm{Na}_{2}\left\{\mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2}\right]\right\}$.	39	1.706 (18)			
$5_{5} \mathrm{H}_{2} \mathrm{O}$		1.712 (16)	1.709	1.68	
$\mathrm{Mo}_{2} \mathrm{O}_{4}(\text { l } \text {-histidine })_{2} .3 \mathrm{H}_{2} \mathrm{O}$	40	1.71		$1 \cdot 68$	
$\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$ (histidine) ${ }_{2} . \mathrm{H}_{2} \mathrm{O}$	41	1.70 (2), 1.72 (2)	1.71	$1 \cdot 68$	

The almost constant sums of the bond distances in Table 6 must be interpreted in such a way that the bonding relations of these $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ plus $\mathrm{Mo}-\mathrm{O}_{\mathrm{f}}$ (or $q \mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$) are practically the same as for two cis $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$.
(ii) Derivation from three $\mathrm{Mo}-\mathrm{O}_{t}$: The sum of the bond lengths of three $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}(1,2,3)$ bonds as given in Table 4 is $3 \times 1 \cdot 738(7)=5 \cdot 21_{4} \AA$. From this arrangement, the following derivative structural situations
which might be possible, are considered:
(a) two O_{t} plus one O_{br}
(b) one O_{t} plus two O_{br}
(c) three $q \mathrm{O}_{t}$ (quasi O_{t}, each with a distance of about $2.36 \AA$ to a second Mo atom; cf. definition of $q \mathrm{O}_{t}$ above)
(d) three O_{br} (each with a more or less equal distance to a second Mo atom).

Table 3. $d\left(\mathrm{Mo}-\mathrm{O}_{t}\right)$ in \AA for structures of compounds containing two cis O_{t} per one Mo
(a)-(e) as in the previous tables.

Case (d) is not known*. Case (c) is found (see Table 8) if all six ligands are oxygen atoms. As regards their long bonds to Mo, these three O_{br} are similar to the three N atoms in MoO_{3}. dien. By using the distance of $1.83 \AA$ for $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ and the characteristic distances for Mo- O_{t} derived before, sums of distances can be calculated. Thus we obtain for case (a) $2 \times 1.68{ }_{3}+$ $1.83=5.196 \AA$ or $2 \times 1.70_{5}+1.83=5.34 \AA$ and for (b) $1.62+2 \times 1.83=5.28 \AA$ or $1.67+2 \times 1.83=5.33 \AA$. It can be seen that the sums $5 \cdot 20$ and $5 \cdot 28 \AA$ are fairly close to the value of the sum of three $\mathrm{Mo}-\mathrm{O}_{t}$. Table 8 compares the values found experimentally for the three cases. We conclude that in these cases the bonding relations between Mo and the three specified O atoms as a whole are fairly similar. Thus, the $d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)=1.83 \AA$ appears to be a characteristic value of Mo-O single-bridge (and chain) distances. Of course, if the distance of the $\mathrm{Mo}-\mathrm{O}_{t}$ is altered (longer than the characteristic value) then the $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ can also be lowered, e.g. to about $1.75-1.76 \AA$, as the example of $\mathrm{MoO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ shows. Table 9 lists the values which were found for medium $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ distances which are longer than $1.83 \AA$. The largest value is $1.96 \AA$, practically equal to the sum of the ionic radii $(0.60 \AA+$ $1.35 \AA=1.95 \AA$; Shannon \& Prewitt, 1969). Up to

* This holds in the same way for a single O_{br} as for two O_{br}. Thus the known compounds with Mo-O double bridges (cf. Table 7) always carry one additional O_{t} per Mo atom and belong to the group of one O_{t} plus two O_{br}.
this distance symmetrical or quasi-symmetrical $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ bridges (or chains) in compounds with other ligand atoms, O, N etc., are found.

Table 4. $d\left(\mathrm{Mo}-\mathrm{O}_{t}\right)$ in \AA for structures of compounds containing three $\mathrm{O}_{t}(1,2,3)$ or four O_{t} (tetrahedral) per one Mo
(a) $-(e)$ as in the preceding tables. dien $=$ diethylenetriamine, A = ethylenediaminetetraacetato-.

Compound	Ref.	d (Mo-O) exp.	Average distance
Three $\mathrm{O}_{t}(1,2,3)$			
MoO_{3}. dien	91	$\begin{aligned} & 1.739(8), \\ & 2 \times 1.735(8) \end{aligned}$	1.736
$\mathrm{Na}_{4}\left(\mathrm{O}_{3} \mathrm{MoAMoO}_{3}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$	68	$\begin{aligned} & 1.731(6), \\ & 1.739 \text { (6), } \\ & 1.749 \text { (6) } \end{aligned}$	1.740
Four O_{t} (tetrahedral)			
PbMoO_{4}	69	4 values	1.77
$\mathrm{KIn}\left(\mathrm{MoO}_{4}\right)_{2}$	70	8	1.76
$\mathrm{K}_{2} \mathrm{MoO}_{4}$	71	4	1.76
$\mathrm{Gd}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$	72	20	1.75
$\alpha-\mathrm{MnMoO}_{4}$	73	8	1.76
$\alpha-\mathrm{ZnMoO}_{4}$	74	12	1.76
CuMoO_{4}	75	12	1.77
$\mathrm{NaCo}_{2.31}\left(\mathrm{MoO}_{4}\right)_{3}$	76	9	1.77
VOMoO_{4}	77	4	1.76
$\mathrm{Cs}_{2} \mathrm{MoO}_{4}$	78	4	1.77
$\mathrm{La}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$	79	18	1.77
$\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	45	4	1.76
$\mathrm{CS}_{2} \mathrm{Mg}\left(\mathrm{MoO}_{4}\right)_{2}$	89	4	1.75
$\mathrm{KEu}\left(\mathrm{MoO}_{4}\right)_{2}$	96	8	1.78
$\mathrm{Cu}_{3} \mathrm{Mo}_{2} \mathrm{O}_{9}$	97	8	$1 \cdot 76$

Table 5. $d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)$ in \AA for the shortest $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridges

Compound	Ref.	$d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)$ exp.	Av. dist.	Red. av. dist.	Remarks
		Mo VI			
$\mathrm{MoO}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$	1	1.81 (5), 1.82 (6)	1.82		Mo-O-Mo:
					$171.6(8)^{\circ}, 178.3(9)^{\circ}$
$\left(\mathrm{MoO}_{2} \mathrm{Cl}_{2} \mathrm{OH}_{2}\right)_{3} . \mathrm{KCl}$	2	$1 \cdot 83$ (1)			$\begin{aligned} & \text { Mo-O-Mo: } 157.5^{\circ} \\ & \text { (Six-membered ring) } \end{aligned}$
		Mo V			
$\left.\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCS}\right)_{2}\right)_{2}\right]_{2} \mathrm{O}$	5	1.851 (34), $1 \cdot 872$ (34)	1.861	1.83	Mo-O-Mo: $178(4)^{\circ}$
$\mathrm{Mo}_{2} \mathrm{O}_{3}\left[\mathrm{SP}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{4} .2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	9	2×1.863 (12)		$1 \cdot 83$	Mo-O-Mo: 180°

Table 6. Sums of experimental cis $d(\mathrm{Mo}-\mathrm{O})$ in \AA
The distances $\mathrm{Mo}-\mathrm{O}_{t}$ and $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ are 'reduced'.

Compound	Ref.	$d\left(\mathrm{Mo}-\mathrm{O}_{t}\right) \quad d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)$	Sum	Av. sum
$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} .4 \mathrm{H}_{2} \mathrm{O}$	21	1.61 (4) +1.80 (3)	3.41	
$\mathrm{MoO}_{2} \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	1	1.60 (3) +1.81 (5)	$3 \cdot 41$	
		1.63 (3) +1.82 (6)	$3 \cdot 45$	$3 \cdot 42$
$\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCS}_{2}\right)_{2}\right]_{2} \mathrm{O}$	5	1.614 (29) +1.821 (34)	3.44	
		1.619 (28) +1.842 (34)	$3 \cdot 46$	$3 \cdot 45$
$\mathrm{Mo}_{2} \mathrm{O}_{3}\left[\mathrm{SP}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right]_{4} .2 \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}$	9	$1.617(14)+1.833$ (12)	$3 \cdot 45$	
$\left(\mathrm{MoO}_{2} \mathrm{Cl}_{2} \mathrm{OH}_{2}\right)_{3} \mathrm{KCl}$	2	1.68 (1) +1.83 (1)	$3 \cdot 51$	
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{8} \mathrm{O}_{27} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	22	$1.697(10)+1.753$ (10)	$3 \cdot 45$	
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	25	13 pairs of distances		$3 \cdot 45$
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mo}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$	92	1.713 (9) +1.778 (8)		$3 \cdot 49$
$\mathrm{Mo}_{8} \mathrm{O}_{23}$	24	$\begin{aligned} & q \mathrm{Mo}-\mathrm{O}_{t}+\mathrm{Mo}-\mathrm{O}_{\mathrm{br}} \\ & 3 \text { pairs of distances } \end{aligned}$		$3 \cdot 511$

(iii) 'Medium' long Mo- O_{br} from dative O_{t} : So far we have considered only such bonds as are involved in the closer coordination (in brackets) of the studied characteristic types of CN 6 , namely $(2+2)+2$, (3) +3 and (4) +2 . These bonds might be (more or less) influenced by the π-bonding system using d orbitals of Mo.
Mo-O distances not belonging to the closer coordination are always Mo- O_{br}. However no accurate values are found between 1.95 and about $2.05 \AA$, except when the oxidation state of Mo is considerably lower than 6.

In $\mathrm{Mo}_{18} \mathrm{O}_{52}$ (Kihlborg, 1963/4c) four 2.00-2.03 \AA ($\sigma=0.03-0.04 \AA$) distances are found, while in $\mathrm{Mo}_{8} \mathrm{O}_{23}$ 2.006(6) $\AA(\mathrm{CN}$ of $\mathrm{O}=3)$ and in $\mathrm{Mo}_{4} \mathrm{O}_{11}$ (Kihlborg, $1963 / 4 d) 2.009(15) \AA$ and two $1 \cdot 990(15) \AA$ were obtained. In these oxides they indicate special bonding situations, where the engaged Mo atoms must be considered to have a considerably lower oxidation state. Thus in MoO_{2} we find a coordination of Mo and O with six distances between 1.972 and $2.073 \AA$.

The $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ distances greater than about $2.05 \AA$ belong to chains in which a relatively short bonded

Table 7. $d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)$ in \AA from all known Mo-O-Mo double bridges

(f) Each bridge is quasi-symmetric.					
Compound	Ref.	$d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right)_{\text {exp }}$.	Av. dist.	$\begin{gathered} \text { Red. } \\ \text { av. dist. } \end{gathered}$	Remarks
$\mathrm{Ba}\left(\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{Ol}_{2} \mathrm{O}_{2}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.$	38	2×1.88 (3), 2×1.93 (3)	1.905	1.88	f
$\mathrm{Mo}_{2} \mathrm{O}_{4}(l \text {-histidine })_{2} .3 \mathrm{H}_{2} \mathrm{O}$	40	4×1.92	1.92	1.89	
$\mathrm{Mo}_{2} \mathrm{O}_{4}\left(\mathrm{SO}_{2} \mathrm{NC}_{5} \mathrm{H}_{10}\right)_{2}$	7	$\begin{aligned} & 1 \cdot 919(18), 1.924(15), \\ & 1.930(14), 1.957(18) \end{aligned}$	1.932	1.90	$f, \mathrm{CN}=5$
$\mathrm{Na}_{2}\left\{\mathrm{Mo}_{2} \mathrm{O}_{4}\left[\mathrm{SCH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COO}\right]_{2} .5 \mathrm{H}_{2} \mathrm{O}\right\}$	39	$\begin{aligned} & 1.907(15), 1.915(15), \\ & 1.946(15), 1.954(15) \end{aligned}$	1.930	1.90	f

Table 8. $d(\mathrm{Mo}-\mathrm{O})$ in \AA which can be derived from three O_{t}
The distances $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ and $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ of the Mo^{v} compounds are 'reduced'.

O_{br} is involved in a second 'dative' bond to another Mo atom. These O_{br} atoms have almost exclusively a CN of 2 . When the shorter bond decreases from 1.83 to $1.68-1.69 \AA\left(q \mathrm{O}_{t}\right)$ the longer bond increases consequently to about $2 \cdot 36 \AA$. An O atom which shows such a distance to a Mo atom we have called a $q \mathrm{O}_{t}$. The distances of this and the following group of $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ show greater deviations around their charac-
teristic mean. The known values of such distances in this group are given in Table 10. The mean value of all 54 distances is $2 \cdot 22_{6} \AA$. Excluding the 12 indicated distances (greater than $2 \cdot 30 \AA$) we obtain $2 \cdot 18_{7} \AA$.
(iv) $q \mathrm{O}_{t} \cdots$ Mo from dative O_{t} : The last characteristic $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ distance which has to be considered is that of O atoms with CN 3 . The known distances are

Table 9. $d(\mathrm{Mo}-\mathrm{O})$ in \AA for $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridges (and chains), other than those listed in Tables 5 and 7
$\mathrm{br}=$ bridge, $\mathrm{k}=\mathrm{chain}$.

Compound	Ref.	$d\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}\right) \mathrm{exp}$.	Av. dist	Remark
Mo VI				
$\mathrm{K}_{2}\left[\left(\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{O}\right]$	32	2×1.876 (2)	1.876	br
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{8} \mathrm{O}_{27} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	22	2×1.889 (7)	1.889	br
$\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	45	2×1.900 (8)	1.90	k
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mo}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$	92	1.886 (7), 1.942 (8)	1.91	k
$\left(\mathrm{pyH}^{+}\right)_{2}\left\{\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right\}$	83	2×1.917 (7)	1.92	br
$\mathrm{K}_{4}\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{O}_{2}\right)_{2}\right]$	35	$2 \times 1 \cdot 89,2 \times 1.91,2 \times 1 \cdot 93,2 \times 1.95$	1.92	br
$\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$	86	10 values	1.922	br
$\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23}\left(\mathrm{H}_{2} \mathrm{O}\right)_{13}$	88	6 values	1.924	br
$\left[\mathrm{NH}_{4}\right]_{5}\left[\left(\mathrm{MoO}_{3}\right)_{5}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}$	95	10 values	1.925	k
$\left[\mathrm{HN}_{3} \mathrm{P}_{3}\left(\mathrm{NMe}_{2}\right)_{6}^{+}\right]_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}^{2-}\right]$	23	12×1.855 (4) - 2.005 (4)	1.928	k
$\mathrm{Na}_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$	87	14 values	1.93	br
$\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$	30	1.921 (10), 1.933 (10)	1.93	br
CoMoO_{4}	58	4 values	1.93	k
HgMoO_{4}	59	2×1.944 (4)	1.94	br
$\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{TeMO}_{6} \mathrm{O}_{24}\right] . \mathrm{Te}(\mathrm{OH})_{6} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	98	12 values	1.94	k
$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{MO}_{2} \mathrm{O}_{5}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right]$	94	4 values	1.95	br
$\mathrm{K}_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{22}\left(\mathrm{O}_{2}\right)_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$	84	8 values	1.95	br
$\mathrm{K}_{2} \mathrm{Mo}_{3} \mathrm{O}_{10}$	47	6 values	1.95	k
$\mathrm{K}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$	48	8 values	1.95	k
$\mathrm{Ag}_{6} \mathrm{Mo}_{10} \mathrm{O}_{33}$	49	15 values	1.95	k
MoO_{3}	19	2×1.948 (8)	1.95	k
Mo < VI				
$\mathrm{Mo}_{8} \mathrm{O}_{23}$	24	7 values	1.91	k
$\mathrm{MoO}_{2.4} \mathrm{~F}_{0.6}$	28	1.921 (3)	1.92	k
$\mathrm{Mo}_{4} \mathrm{O}_{11.2} \mathrm{~F}_{0.8}$	28	2×1.947 (2), 2×1.963 (3)	1.955	k
$\mathrm{Mo}_{17} \mathrm{O}_{47}$	81	30 values	$1 \cdot 947$	k
$\mathrm{Mo}_{4} \mathrm{O}_{10}(\mathrm{OH})_{2}$	27	2×1.959 (30), 2×1.956 (30)	1.96	k
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	25	26 values	1.96	k

Table 10. $d(\mathrm{Mo} \cdot . \mathrm{O})$ in \AA of asymmetric bridges and chains

Compound	Ref.	$d(\mathrm{Mo}-\mathrm{O}) \mathrm{exp}$.	Av. distance
$\mathrm{MoO}_{2} \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	1	2.09 (5), $2 \cdot 12$ (6)	$2 \cdot 10$
$\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	45	2.267 (18)	
$\mathrm{K}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	46	2.17, $2 \cdot 27$	$2 \cdot 22$
$\mathrm{K}_{2} \mathrm{Mo}_{3} \mathrm{O}_{10}$	47	$2 \cdot 14$ (3)	
$\mathrm{K}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$	48	2.23 (3), $2 \cdot 34$ (3),* 2.39 (3),* $2 \cdot 35$ (3)*	2-36*
MoO_{3}	19	2.251 (8)	
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	25	$\begin{aligned} & 2 \cdot 210,2 \cdot 140,2 \cdot 170,2 \cdot 060,2 \cdot 190,2 \cdot 160, \\ & 2 \cdot 290,2 \cdot 160,2 \cdot 210,2 \cdot 090,2 \cdot 210,2 \cdot 110, \\ & 2 \cdot 120(\text { all } \sigma=0 \cdot 025) \end{aligned}$	$2 \cdot 16$
$\mathrm{Mo}_{8} \mathrm{O}_{23}$	24	$\begin{aligned} & 2 \cdot 369(6), * 2 \cdot 362(6), * 2 \cdot 360(6), * \\ & 2 \cdot 356(6)^{*} \end{aligned}$	$2 \cdot 36$
$\mathrm{K}_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{22}\left(\mathrm{O}_{2}\right)_{2}\right] .8 \mathrm{H}_{2} \mathrm{O}$	35	$\begin{aligned} & 2 \cdot 08(7), 2 \cdot 16(2), 2 \cdot 20(2), 2 \cdot 28(2), \\ & 2 \times 2 \cdot 33(2), * 2 \cdot 34(3), * 2 \cdot 49(3)^{*} \end{aligned}$	$\begin{aligned} & 2 \cdot 18 \\ & 2 \cdot 37 \end{aligned}$
$\mathrm{Mo}_{17} \mathrm{O}_{47}$	81	$\begin{aligned} & 2 \cdot 10,2 \cdot 12,2 \cdot 16,2 \times 2 \cdot 20,2 \times 2 \cdot 21,2 \cdot 29, \\ & 2 \cdot 30^{*}(\text { all } \sigma=0 \cdot 03 \AA) \end{aligned}$	$2 \cdot 19$
$\mathrm{Bi}_{2} \mathrm{MoO}_{6}$	82	$2 \times 2 \cdot 24$ (2)	
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{8} \mathrm{O}_{27} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	22	2.046 (7)	2.05
$\mathrm{Mo}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}-1 \text {-histidine. } 1 \cdot 5 \mathrm{H}_{2} \mathrm{O} \text {) }$	47	$2 \cdot 213$ (6), $2 \cdot 204$ (6)	$2 \cdot 208$
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mo}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x}$	92	2.075 (8), 2.080 (7), 2.258 (9)	$2 \cdot 14$
$\mathrm{MoO}_{2}\left(\mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{C}_{17} \mathrm{H}_{16}\right)$	93	2.074 (4)	

shown in Table 11. The mean value of all 76 distances is $2.29 \AA$; omitting ten indicated values (less than $2.20 \AA$) gives $2.32 \AA$. It is remarkable that in $\left\{\mathrm{HN}_{3} \mathrm{P}_{3}\left[\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{6}^{+}\right\}_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}^{2-}\right]$, where one O is at a centre of an (O-bridged) octahedron of six Mo atoms, this O has six distances between 2.312 and $2.324 \AA$ (average 2-319) (Allcock, Bissel \& Shawl, 1972).
(II) Assignment of the characteristic distances to bond orders (BO)

From the characteristic distances we obtain the influence of the two types of additional ligand atoms upon the bond length of one $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ and two cis $\mathrm{Mo}-\mathrm{O}_{t}$, expressed in differences of these distances. For one $\mathrm{Mo}-\mathrm{O}_{t}$ the change is $1.67-1.62=\Delta d_{1}=0.05 \AA$, for two cis Mo- O_{t} the change is $1 \cdot 70_{5}-1 \cdot 68_{3}=\Delta d_{2}=$ $0.02_{2} \AA$. The differences are correlated with the total
influence of the two types of additional ligands being the same in both arrangements. We expect a relation $2 \Delta d_{1}=5 \Delta d_{2}$, which is satisfactorily fulfilled.
For the differences between the characteristic $\mathrm{Mo}-\mathrm{O}_{t}$ distances of a single $\mathrm{Mo}^{-\mathrm{O}_{t}}$, two cis $\mathrm{Mo}-\mathrm{O}_{t}$, three $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ and the MoO_{4}^{2-} tetrahedron we obtain: $1.70_{5}-$ $1.67=0.03 \AA, 1.73_{8}-1 \cdot 70_{5}=0.03_{3} \AA$ and $1.77-1.73_{8}=$ $0 \cdot 03_{2} \AA$. From these, within the limits of error, equal differences we assume a correlation between these four types of arrangements. We attribute the change of π bond order to be mainly responsible for these changes in distances.

We follow the ideas of Cotton \& Wing (1965a) that a single $\mathrm{Mo}-\mathrm{O}_{t}$ bond (placed along the z axis) has access to two $d \pi$ orbitals, namely the $d_{x z}$ and $d_{y z}$ orbitals of Mo. We call this type of interaction π_{1}. Two cis Mo- O_{t} bonds (placed along the x and z axes)

Table 11. $d(\mathrm{Mo} \cdots \mathrm{O})$ in \AA of asymmetric bridges and chains with $C N=3$ for the O atom
Values with asterisk, see text.

Compound	Ref.	$d(\mathrm{Mo}-\mathrm{O}) \mathrm{exp}$.	Av. distance
HgMoO_{4}	59	2.228 (4)	
CoMoO_{4}	58	2.313 (8), 2.328 (8)	$2 \cdot 32$
$\mathrm{K}_{2} \mathrm{MO}_{4} \mathrm{O}_{13}$	48	$2 \cdot 30$ (3), $2 \cdot 23$ (3), $2 \cdot 30$ (3), $2 \cdot 11$ (3)*	$2 \cdot 28$
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	25	$\begin{aligned} & 2 \cdot 240,2 \cdot 260,2 \cdot 270,2 \times 2 \cdot 300,2 \cdot 320, \\ & 2 \cdot 330,2 \cdot 350,2 \cdot 380,3 \times 2 \cdot 390,2 \times 2 \cdot 400, \end{aligned}$	
		$2 \cdot 450,2 \cdot 470$,	$2 \cdot 35$
		2.020,* $2 \times 2 \cdot 090$, $2 \cdot 130$, $2 \cdot 150$,*	
		$\begin{aligned} & 2 \cdot 160,2 \cdot 190^{*} \\ & \text { (all } \sigma=0.025 \AA \text {) } \end{aligned}$	2.12*
$\mathrm{K}_{4}\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{O}_{2}\right)_{2}\right]$	35	2.30, 2.21, 2.22, $2 \cdot 25$	$2 \cdot 24$
$\left[\mathrm{HN}_{3} \mathrm{P}_{3}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)_{5}^{+}\right]_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}^{2-}\right]$	23	6×2.312 (4) - 2.324 (4)	$2 \cdot 319$
$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	21	$\begin{aligned} & 2 \cdot 23(3), 2 \times 2.28(3), 2.31(3), 2.32(3), \\ & 2.41(4), 2.46(4) \end{aligned}$	2.33
$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{8} \mathrm{O}_{27} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	22	$2 \cdot 348$ (7), 2.370 (7), 2.401 (7)	2.37
$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{5}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right]$	94	2.15,* $2 \cdot 17^{*}$	2.16*
		2.35, 2.37	2.36
$\left[\mathrm{NH}_{4}\right]_{5}\left[\left(\mathrm{MoO}_{3}\right)_{5}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}$	95	2.172,*2.205, 2.269,	
		2.270, 2.307, 2×2.338,	
		2.345, $2.367,2.427$	
		(all $\sigma=0.003 \AA$)	$2 \cdot 303$
$\left(\mathrm{NH}_{4}\right)\left[\mathrm{TeMO}_{6} \mathrm{O}_{24}\right] \cdot \mathrm{Te}(\mathrm{OH})_{6} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	98	12×2.299 (32)	$2 \cdot 30$
$\alpha-\mathrm{MoO}_{3} . \mathrm{H}_{2} \mathrm{O}$	50	2.277 (7)	

Table 12. $d(\mathrm{Mo} \cdots \mathrm{O})$ in \AA of coordinated water molecules

Compound	Ref.	d (Mo-O) exp.	Average distances
Mo VI			
$\mathrm{MoO}_{2} \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$	1	$2 \cdot 23$ (3), 2.25 (3)	$2 \cdot 24$
$\left(\mathrm{MoO}_{2} \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}\right)_{3} . \mathrm{KCl}$	2	2.25 (2)	
KMoOCl ${ }_{4} \cdot \mathrm{H}_{2} \mathrm{O}$	10	2.27 (5)	
$\left[\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4} \mathrm{As}\right]\left[\mathrm{MoOBr}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	12	$2 \cdot 39$ (3)	
$\mathrm{MoO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$	20	$2 \cdot 274$ (2), $2 \cdot 276$ (2), $2 \cdot 290$ (2), $2 \cdot 294$ (2)	2-284
$\mathrm{K}_{2}\left(\left[\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right)$	65	2.330 (18)	
$\mathrm{H}\left[\mathrm{MoO}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]$	64	2.34 (3), 2.35 (3)	
$\mathrm{MoO}_{2}\left(\mathrm{OC}_{2} \mathrm{H}_{4} \mathrm{OH}\right)_{2}$	61	$\begin{aligned} & 2.236(9), 2.271(10), \\ & 2.372(9), 2.351 \text { (9) } \end{aligned}$	$\begin{aligned} & 2.254 \\ & 2 \cdot 361 \end{aligned}$
$\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{PO}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} . \mathrm{H}_{2} \mathrm{O}$	31	2.347 (5)	
$\left(\mathrm{pyH}^{+}\right)_{2}\left(\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right)$	83	$2 \cdot 445$ (7)	
$\mathrm{K}_{2}\left[\mathrm{MO}_{2} \mathrm{O}_{3}\left(\mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	30	$2 \cdot 420$ (9), $2 \cdot 470$ (9)	$2 \cdot 445$
$\alpha-\mathrm{MoO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	50	$2 \cdot 346$ (7)	
Mo V			
$\mathrm{MO}_{2} \mathrm{O}_{4}$ (l-histidine). $3 \mathrm{H}_{2} \mathrm{O}$	40	2.21 (4)	
$\mathrm{Ba}\left(\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}_{2}\right) \cdot 3 \mathrm{H}_{2} \mathrm{O}$	38	$2 \cdot 22$ (4)	

Fig. 2. $d(\mathrm{Mo}-\mathrm{O}) / \mathrm{BO}_{\mathrm{mo}-\mathrm{o}}$ diagram on a linear scale. + This work with estimated errors (vertical lines). A, B, C, D are the points of definition. Δ Values of Cotton \& Wing (1965a). - Value of Le Carpentier, Mitschler \& Weiss (1972).

Fig. 3. $d(\mathrm{Mo}-\mathrm{O}) / \mathrm{BO}_{\mathrm{Mo}-\mathrm{o}}$ diagram on a half-logarithmic scale. A, B, C, D are the points of definition. Vertical lines give the estimated errors, circles mark the points with $\mathrm{BO}=1$ and with a distance equal to the sum of the ionic radii.
may also have together two interactions of type π_{1} plus one using the $d_{x z}$ orbital of Mo, which we call π_{2}. For the difference in π-bond order we expect per one Mo-O ${ }_{t}$ bond: $2 \pi_{1}-\left(2 \pi_{1}+1 \pi_{2}\right) / 2=\pi_{1}-0 \cdot 5 \pi_{2}$. Including the arrangement of three O_{t} we attribute to it three additional bonds of type π_{2}. The difference in π-bond order between three $\mathrm{Mo}-\mathrm{O}_{t}$ and two cis Mo- O_{t} is obtained by $\left(2 \pi_{1}+1 \pi_{2}\right) / 2-3 \pi_{2} / 3=\pi_{1}-0 \cdot 5 \pi_{2}$. As the geometry of the structures of the 'three $\mathrm{Mo}-\mathrm{O}_{t}$ ' compounds shows (angles $\mathrm{O}_{t}-\mathrm{Mo}-\mathrm{O}_{t}$ all about 106°), the description through the π bonding of octahedral compounds (three metal d orbitals) is less favourable, than through the π bonding of tetrahedral compounds (two metal d orbitals). We call this type of interaction π_{3}. The $\mathrm{Mo}-\mathrm{O}_{t}$ in the MoO_{4}^{2-} tetrahedron are assigned $0.5 \pi_{3}$ bonds each; each $\mathrm{Mo}-\mathrm{O}_{t}$ of the three $\mathrm{Mo}-\mathrm{O}_{t}$ arrangement is assigned $0.67 \pi_{3}$ bonds. For the difference in π bonding we obtain $2 \pi_{3} / 3-2 \pi_{3} / 4=\pi_{3} / 6$. From this, we can correlate the octahedral π bonding to the tetrahedral π bonding which results in $\pi_{2} \approx \frac{2}{3} \pi_{3}$.
For a definition of a Mo-O bond distance/bond order relation we state:
(1) The characteristic Mo-O distances of three O_{t}, $1.738 \AA$, have a bond order of 1.67 (one σ and $\frac{2}{3} \pi_{3}$ bonds) each. (Point A.)
(2) The characteristic $\mathrm{Mo}-\mathrm{O}_{t}$ distance of the MoO_{4}^{2-} tetrahedra, $1.77 \AA$, has a bond order of 1.5 (one σ and $\frac{1}{2} \pi_{3}$ bonds) each. (Point B.)
(3) A bond order of 0.33 is assigned to the value of the Mo-O O_{br} distance of $2 \cdot 16 \AA$. (Point C).
(4) A bond order of 0.1 is assigned to the value of the $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ distance of $2.32 \AA$. (Point D.)

For statement (3) we consider in particular the two compounds MoO_{3}. dien and $\mathrm{Na}_{4}\left(\mathrm{O}_{3} \mathrm{MoAMoO}_{3}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$ ($\mathrm{A}=$ ethylenediaminetetraacetato-). Both compounds contain Mo in oxidation state 6 and both also have threeequal $\mathrm{Mo}-\mathrm{O}_{t}$ distances. While MoO_{3}. dien contains as further ligands three N atoms with equal distances [$2 \times 2 \cdot 320(6) \AA, 2 \cdot 332(9) \AA$, average $2 \cdot 324 \AA$],
$\mathrm{Na}_{4}\left(\mathrm{O}_{3} \mathrm{MoAMoO}_{3}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$ has one further N atom [2•399(5) \AA] and two more O atoms [2•176(6) \AA and $2 \cdot 213(6) \AA$, average $2 \cdot 195 \AA$]. Assuming that the bond strength to these more distant ligand atoms is very similar in both compounds and also equal for O and N , we obtain the relation that a Mo-N distance of $2 \cdot 399 \AA$ is equivalent to a Mo-O distance of $2 \cdot 195 \AA$. This difference of $0.204 \AA$ allows a transformation of the $2 \cdot 324 \AA \mathrm{Mo}-\mathrm{N}$ distances in MoO_{3}. dien into 'corresponding Mo-O distances' of $2 \cdot 12 \AA$. The average of $2 \cdot 12$ and $1.295 \AA$ is $2.17 \AA$ which is regarded as the characteristic Mo-O O_{br} bond for these situations. This value is close to the average value of $2 \cdot 18 \AA$ in Table 10 . The sums of the bond order from the three $\mathrm{Mo}-\mathrm{O}_{t}$ bonds in both these compounds is $3 \times 1.67=5.01$, leaving a difference of $\mathrm{BO}=0.99$ for the residual three ligands, 0.33 for each bond.
The BO of 0.1 in statement (4) has been taken from a SCMO calculation of Brown, Perkins \& Stewart (1972). These authors calculated bond-order values

Table 13. Results of the application of Fig. 3 to all Mo-O coordination polyhedra from sufficiently accurate crystal structures
The listing follows the given e.s.d.'s of the Mo-O distances from the structure determination. The distances of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Mo}\left(\mathrm{O}_{2}\right)_{4}\right]$ are given by Stomberg (1969).

Compound	Average $\sigma(\AA)$ of $d_{\mathrm{Mo}-\mathrm{o}}$	Average $d_{\mathrm{Mo}-\mathrm{O}}$	Sum of BO	Av. sum BO in one compound	Formal oxidation state	$\underset{\text { (pseudo }}{\mathrm{CN}}$ $\mathrm{CN})$
$\mathrm{MoO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$	0.001-2	1.960	$5.898(\sim 15)$		6	6
MoO_{2}	0.003	2.011	3.719 (48)		4	6
$\left(\mathrm{NH}_{4}\right)_{5}\left[\left(\mathrm{MoO}_{3}\right)_{5}\left(\mathrm{PO}_{4}\right)\left(\mathrm{HPO}_{4}\right)\right] .3 \mathrm{H}_{2} \mathrm{O}$	0.003	1.97	$5 \cdot 740$ (70)	5.721	6	6
	0.003	1.976	$5 \cdot 723$ (70)			6
	0.003	1.981	$5 \cdot 720$ (70)			6
	0.003	1.974	$5 \cdot 720$ (70)			6
	0.003	1.991	$5 \cdot 705$ (70)			6
MoOPO_{4}	0.003	1.914	5.030 (80)		5	5 (6)
HgMoO_{4}	<0.004	$1 \cdot 965$	$5.58(<12)$		6	6
$\left[\mathrm{HN}_{3} \mathrm{P}_{3}\left(\mathrm{NMe}_{2}\right)_{6}^{+}\right]_{2}\left[\mathrm{Mo}_{6} \mathrm{O}_{19}^{2-}\right]$	0.004	1.950	5.58 (10)	$5 \cdot 56$	6	6
	0.004	1.950	$5 \cdot 56$ (10)			6
	0.004	1.953	$5 \cdot 54$ (10)			6
$\mathrm{NaNH}_{4}\left[\mathrm{MoO}_{3} \mathrm{C}_{2} \mathrm{O}_{4}\right] .2 \mathrm{H}_{2} \mathrm{O}$	0.004	2.042	3.985 (50)		6	6
$\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} . \mathrm{H}_{2} \mathrm{O}$	0.005	1.976	6.02 (10)		6	7 (5)
$\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OP}\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3} . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	0.005	1.978	6.25 (10)		6	7 (5)
$\alpha-\mathrm{MnMoO}_{4}$	0.005	1.759	$6 \cdot 37$ (8)	$6 \cdot 30$	6	4
	0.005	1.763	$6 \cdot 24$ (8)			4
PbMoO_{4}	0.006	1.772	$6 \cdot 00$ (9)		6	4
$\mathrm{Mo}_{8} \mathrm{O}_{23}$	0.006	1.958	5.90 (10)	5.77	5.75	6
	0.006	1.956	5.83 (10)			6
	0.006	1.955	$5 \cdot 70$ (10)			6
	0.006	1.954	5.65 (10)			6
$\left(\mathrm{pyH}^{+}\right)_{2}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OOHH}\right]_{2}$	0.006	1.979	6.01 (10)		6	7 (5)
$\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{8} \mathrm{O}_{27} .4 \mathrm{H}_{2} \mathrm{O}$	0.007	1.960	5.74 (10)	$5 \cdot 66$	6	6
	0.007	1.972	5.73 (10)			6
	0.007	1.976	$5 \cdot 59$ (10)			6
	0.007	1.974	$5 \cdot 58$ (10)			6
$\left(\mathrm{pyH}^{+}\right)_{2}\left(\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right) \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right)$	0.007	1.984	5.96 (10)		6	7 (5)
MoO_{3}	0.008	1.981	$5 \cdot 74$ (20)		6	6
CoMoO_{4}	0.008	1.991	$5 \cdot 50$ (13)	5.44	6	6
$\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	0.008 0.008	1.992 1.974	$5 \cdot 37(13)$ $5.826(15)$	5.743	6	6
$\mathrm{Na}_{4} \mathrm{H}_{2} \mathrm{MO}_{5} \mathrm{P}_{2} \mathrm{O}_{23} \cdot 10 \mathrm{H}_{2} \mathrm{O}$	0.008	1.979	5.819 (15)			6
	0.008	1.984	$5 \cdot 727$ (15)			6
	0.008	1.979	$5 \cdot 686$ (15)			6
	0.008	1.989	$5 \cdot 657$ (15)			6
$\mathrm{MoO} \mathrm{O}_{2}\left(\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}$	0.008	1.952	$5 \cdot 885$ (15)		6	6
$\mathrm{MoO}_{2}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$	0.009	2.001	$5 \cdot 16$ (16)	$5 \cdot 16$	6	6
	0.009	2.003	$5 \cdot 18$ (16)			6
$\mathrm{Na}_{3} \mathrm{H}_{6} \mathrm{Mo}_{9} \mathrm{PO}_{34}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\boldsymbol{x}}$	0.009	1.968	$5 \cdot 67$ (16)	$5 \cdot 57$	6	6
	0.009	1.982	$5 \cdot 61$ (16)			6
	0.009	1.982	$5 \cdot 43$ (16)			6
$\mathrm{Na}_{6} \mathrm{Mo}_{5} \mathrm{P}_{2} \mathrm{O}_{23} .13 \mathrm{H}_{2} \mathrm{O}$	0.009	1.965	$5 \cdot 658$ (17)	$5 \cdot 59$	6	6
	0.009	1.984	$5 \cdot 60$ (17)			6
	0.009	1.979	$5 \cdot 512$ (17)			6
$\alpha-\mathrm{ZnMoO}_{4}$	0.009	1.761	$6 \cdot 36$ (15)	$6 \cdot 25$	6	4
	0.009	1.762	$6 \cdot 29$ (15)			4
	0.009	1.768	$6 \cdot 10$ (15)			4
CuMoO_{4}	0.009	1.766	$6 \cdot 17$ (15)	$6 \cdot 09$	6	4
	0.009	1.776	$6 \cdot 12$ (15)			4
	0.009	1.775	5.98 (15)			4
$\mathrm{Gd}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$	0.01	1.732	$6 \cdot 96(<17)$	6.77	6	4
	0.01	1.749	$6 \cdot 58(<17)$			4
	0.01	1.752	$6 \cdot 50(<17)$	$6 \cdot 40$		4
	0.01	1.758	$6 \cdot 35$ (<17)			4
	0.01	1.758	$6 \cdot 35(<17)$			4
$\mathrm{NaCo}_{2.31}\left(\mathrm{MoO}_{4}\right)_{3}$	0.01	1.765	6.18 (20)	6.08	$6 ?$	4
$\mathrm{K}_{2}\left[\mathrm{Mo}_{2} \mathrm{O}_{3}\left(\mathrm{O}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$	0.01 0.01	1.774 1.986	$5.97(20)$ $6.07(22)$	6.02	6	4 7 7
	0.01	1.983	5.98 (22)			7 (5)
$\mathrm{K}_{2} \mathrm{MoO}_{4}$	0.01	1.76	$6 \cdot 30$ (20)		6	4
$\mathrm{LiMoO}_{2} \mathrm{AsO}_{4}$	0.011	1.967	$5 \cdot 70$ (25)		6	6
VOMoO_{4}	0.012	1.764	$6 \cdot 16$ (28)		6	4

Table 13 (cont.)

Compound	Average $\sigma(\AA)$ of $d_{\mathrm{M}-\mathrm{O}}$	Average $d_{\mathrm{Mo}-\mathrm{O}}$	Sum of BO	one compound	Formal oxidation state	$\begin{gathered} \mathrm{CN} \\ \text { (pseudo } \\ \mathrm{CN} \text {) } \end{gathered}$
$\mathrm{K}_{2}\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right]$	0.015	1.971	5.95 (16)		6	7 (5)
$\mathrm{Mo}_{4} \mathrm{O}_{11}$ (monoclinic)	0.017	1.756	6.37 (40)	$5 \cdot 68$	$5 \cdot 50$	4
	0.017	1.945	$5 \cdot 95$ (40)			6
	0.017	1.937	$5 \cdot 58$ (40)			6
	0.017	1.946	$4 \cdot 81$ (40)			6
$\mathrm{Mo}_{4} \mathrm{O}_{11}$ (orthorhombic)	0.017	1.758	$6 \cdot 34$ (40)	$5 \cdot 61$	$5 \cdot 50$	4
	0.017	1.936	$5 \cdot 96$ (40)			6
	0.017	1.951	$5 \cdot 30$ (40)			6
	0.017	1.942	$4 \cdot 85$ (40)			6
$\mathrm{Na}_{2} \mathrm{MO}_{2} \mathrm{O}_{7}$	0.018	1.757	6.47 (51)	$6 \cdot 43$	6	4
	0.018	1.950	$6 \cdot 39$ (54)			6
$\mathrm{K}_{2}\left(\left[\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right)$	0.019	1.976	$6 \cdot 12$ (46)		6	6
$\mathrm{Na}_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}\left(\mathrm{H}_{2} \mathrm{O}\right)_{14}$	0.02	1.997	5.99 (50)	$5 \cdot 63$	6	6
	$0 \cdot 02$	1.958	$5 \cdot 85$ (50)			6
	0.02	1.953	$5 \cdot 83$ (50)			6
	0.02	1.997	$5 \cdot 52$ (50)			6
	0.02	1.977	$5 \cdot 48$ (50)			6
	$0 \cdot 02$	$1 \cdot 967$	$5 \cdot 45$ (50)			6
	$0 \cdot 02$	1.977	$5 \cdot 32$ (50)			6
$\mathrm{Mo}_{18} \mathrm{O}_{52}$	0.025	1.92	$6 \cdot 69$ (55)	$5 \cdot 63$	$5 \cdot 78$	6
	$0 \cdot 025$	1.99	$6 \cdot 62$ (55)			6
	0.025	1.76	$6 \cdot 53$ (55)			4
	0.025	1.97	$6 \cdot 00$ (55)			6
	0.025	1.93	5.98 (55)			6
	0.025	1.97	5.76 (55)			6
- -	0.025	1.97	$5 \cdot 74$ (55)			6
	0.025	1.97	$5 \cdot 72$ (55)			6
	0.025	1.99	5.48 (55)			6
	0.025	1.97	$5 \cdot 46$ (55)			6
	0.025	1.99	5.43 (55)			6
	0.025	1.97	$5 \cdot 41$ (55)			6
	0.025	2.00	$5 \cdot 38$ (55)			6
	0.025	2.00	$5 \cdot 34$ (55)			6
	0.025	1.98	$5 \cdot 27$ (55)			6
	0.025	$2 \cdot 00$	$5 \cdot 14$ (55)			6
	0.025	1.99	$5 \cdot 01$ (58)			4
	0.025	2.03	$4 \cdot 30$ (55)			6
$\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{Mo}\left(\mathrm{O}_{2}\right)_{4}\right]$	0.025	1.965	$5 \cdot 84$ (52)		6	8 (4)
$\mathrm{H}_{2} \mathrm{MO}_{4} \mathrm{O}_{12}$	0.03	1.98	$5 \cdot 15$ (62)		$5 \cdot 5$	6
$\mathrm{K}_{2} \mathrm{Mo}_{3} \mathrm{O}_{10}$	0.03	1.85	$6 \cdot 60$ (61)	$6 \cdot 20$	6	5
	0.03	1.95	$5 \cdot 81$ (60)			6
$\mathrm{K}_{2} \mathrm{Mo}_{4} \mathrm{O}_{13}$	0.03	1.96	$5 \cdot 97$ (61)	$5 \cdot 77$	6	6
	0.03	1.98	$5 \cdot 94$ (62)			6
	0.03	1.99	$5 \cdot 64$ (61)			6
	0.03	1.99	$5 \cdot 54$ (62)			6
$\mathrm{Ag}_{6} \mathrm{Mo}_{10} \mathrm{O}_{33}$	0.03	1.99	$5 \cdot 78$ (61)	$5 \cdot 50$	6	6
	0.03	1.99	$5 \cdot 58$ (61)			6
	0.03	1.98	$5 \cdot 42$ (61)			6
	0.03	2.02	$5 \cdot 38$ (61)			6
	0.03	1.97	$5 \cdot 36$ (61)			6
$\mathrm{Ba}\left\{\left[\mathrm{MoO}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}_{2} \mathrm{O}_{2}\right\} .3 \mathrm{H}_{2} \mathrm{O}\right.$	0.03	$2 \cdot 00$	$4 \cdot 83$ (61)		5	6
$\mathrm{K}_{6}\left[\mathrm{Mo}_{7} \mathrm{O}_{22}\left(\mathrm{O}_{2}\right)_{2}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$	0.03	1.997	6.06 (70)	$5 \cdot 69$	6	7 (5)
	0.03	1.965	5.81 (70)			6
	0.03	1.975	$5 \cdot 74$ (70)			6
	0.03	1.995	$5 \cdot 16$ (70)			6
$\mathrm{KEu}\left(\mathrm{MoO}_{4}\right)_{2}$	0.03	1.78	5.985 (60)	$5 \cdot 80$	6	4
	0.03	1.79	$5 \cdot 625$ (65)			4
$\mathrm{Cu}_{3} \mathrm{Mo}_{2} \mathrm{O}_{9}$	0.03	1.755	$6 \cdot 41$ (65)	$6 \cdot 27$	6	4
	0.03	1.77	$6 \cdot 13$ (65)			4
$\left(\mathrm{NH}_{4}\right)_{6}\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right] . \mathrm{TeOH} 6.7 \mathrm{H}_{2} \mathrm{O}$	0.035	1.985	$5 \cdot 52$ (70)		6	6
$\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{8} \mathrm{O}_{26} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	0.04	1.992	$6 \cdot 80$ (75)	$6 \cdot 02$	6	6
	0.04	1.988	5.94 (75)			6
	0.04	1.967	$5 \cdot 81$ (75)			6
	$0 \cdot 04$	$2 \cdot 008$	$5 \cdot 51$ (75)			6

Table 13 (cont.)

Compound	Average $\sigma(\AA)$ of $d_{\text {Mo-o }}$	Average $d_{\mathrm{M}_{0}-\mathrm{O}}$	Sum of BO	Av. sum BO in one compound	Formal oxidation statc	$\begin{aligned} & \mathrm{CN} \\ & \text { (pseudo } \\ & \mathrm{CN} \text {) } \end{aligned}$
$\mathrm{Mo}_{17} \mathrm{O}_{47}$	0.04	1.94	$6 \cdot 20$ (75)	$5 \cdot 22$	$5 \cdot 53$	6
	0.04	1.95	$5 \cdot 84$ (75)			6
	0.04	1.97	$5 \cdot 36$ (75)			6
	0.04	1.95	$5 \cdot 27$ (75)			6
	0.04	1.94	$5 \cdot 22$ (75)			6
	0.04	1.96	$5 \cdot 16$ (75)			6
	0.04	1.99	$5 \cdot 08$ (75)			7
	$0 \cdot 04$	1.94	$4 \cdot 88$ (75)			6
	0.04	$2 \cdot 02$	4.01 (75)			6
$\mathrm{AgMoO}_{2} \mathrm{PO}_{4}$	~ 0.06	1.98	4.79		6	6
$\mathrm{K}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	-	1.78	5.96	$5 \cdot 64$	6	4
	-	1.98	$5 \cdot 33$			6
$\mathrm{K}_{4}\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\left(\mathrm{O}_{2}\right)_{2}\right]$	-	1.94	$6 \cdot 18$	6.03	6	6
	-	1.96	6.06			6
	-	1.96	$5 \cdot 83$			6
$\mathrm{UO}_{2}\left[\mathrm{MoO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{O}_{3 / 2}\right]_{2}$	-	1.96	$6 \cdot 40$	$5 \cdot 87$	6	6
	-	$2 \cdot 02$	$5 \cdot 14$			6
$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{MO}_{2} \mathrm{O}_{5}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{2}\right]$		1.97	5.93	$5 \cdot 76$	6	6
		1.97	$5 \cdot 58$			6

('defined so that they afford a measure of the covalent character of the bond') in a model compound $\left[\mathrm{MoO}_{2}(\mathrm{OH})_{2} \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}$ for which the geometrical values were taken from $\mathrm{K}_{2}\left[\left\{\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \mathrm{H}_{2} \mathrm{O}\right\}_{2} \mathrm{O}\right]$ according to Cotton, Morehouse \& Wood (1964). The coordinated $\mathrm{H}_{2} \mathrm{O}$ molecule in this compound shows a Mo-O distance of $2 \cdot 330(18) \AA$. Table 12 shows all known Mo-O distances of coordinated water and in two cases of coordinated $\mathrm{C}-\mathrm{O}-\mathrm{H}$ groups. The average value of these distances is $2.317 \AA$, practically equal to the distance of $2.32 \AA$ according to statement (4) and also equal to the average of $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridges, having O with a CN of 3 (Table 11).

(III) Bond-distance bond-order correlation diagram

The expected shape of such a diagram is known from the first attempts to derive one for the Mo-C and Mo-O bonds by Cotton \& Wing (1965a, b). The recent most general treatment of element-oxygen bonds for elements in the periodic table from H^{+}to As^{5+} (Brown \& Shannon, 1973) resulted in similar curves.

Fig. 2 shows the curve through our four points of definition. On this curve, the points of the characteristic distances are marked. Estimated errors are indicated by vertical bars. The diagram also contains the values used by Cotton \& Wing (1965a), and the one given by Le Carpentier, Mitschler \& Weiss (1972). The curve of Fig. 2 is transformed to a half-logarithmic scale in Fig. 3.

A least-squares calculation with the values of points A, B and C gave the equation

$$
\begin{equation*}
d_{\mathrm{Mo}-\mathrm{O}}=1 \cdot 87_{4}-0 \cdot 60_{\mathrm{O}} \log \mathrm{BO}_{\mathrm{Mo}-\mathrm{O}} . \tag{1}
\end{equation*}
$$

What information does this curve provide?
(1) For higher bond order the curve leads to a bond order of $2 \cdot 9$ for a Mo-O distance of $1 \cdot 60 \AA$. As Table 1
shows, this value is obviously a limiting value and is reached in some structures, although associated with considerable e.s.d.'s.
(2) If point D is also included in the least-squares calculation the resulting equation is

$$
\begin{equation*}
d_{\mathrm{Mo}-\mathrm{o}}=1 \cdot 86_{6}-0 \cdot 49_{1} \log \mathrm{BO} \tag{2}
\end{equation*}
$$

According to equation (2) a distance of $1.62 \AA$ would correspond to a BO of 3.17 which is unreasonable. With equation (1) this distance gives a reasonable BO of $2 \cdot 66$.
(3) We find from Fig. 3 that the characteristic $\mathrm{Mo}-\mathrm{O}_{t}$ bond distances of $1.67,1.683$ and $1.705 \AA$ described in $\S(\mathrm{I})$, correspond to bond orders of about $2 \cdot 2,2 \cdot 1$ and $1 \cdot 9$, respectively.
(4) The distance, corresponding to a bond order of one, is of special interest. According to equation (1) it corresponds to a distance of $1 \cdot 87_{4} \AA$. This value has been found in $\mathrm{K}_{2}\left\{\left[\mathrm{MoO}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2} \mathrm{O}\right\}$ (Cotton, Morehouse \& Wood, 1964) in a symmetrical, straight Mo-O-Mo bridge with Mo-O distances of 1-876(2) \AA. This anion is a $2 \mathrm{O}_{\mathrm{t}}+1 \mathrm{O}_{\text {br }}$ case with a sum of $1.68+$ $1 \cdot 70+1 \cdot 876=5.25 \AA$ for these three distances. This is fairly close to the value of $5 \cdot 21 \AA$ for three O_{t}. As the anion is a dinuclear, single bridged complex anion with $\mathrm{Mo}^{\mathrm{V1}}$, the existence of a $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}(\sigma)$ single bond in this compound looks extremely reasonable.

For shorter distances than this we find, according to Table 5, symmetrical Mo-O bridges with bridge bond angles close to 180° in Mo^{\vee} compounds. For bridging distances corresponding to a bond order smaller than one we do not find any example with a $180^{\circ} \mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$ bridge. In the accurately determined structure of $\mathrm{Na}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ (Seleborg, 1967) in the octahedron a Mo-O O_{br} distance is found to be $1 \cdot 900(8) \AA$ which is the nextclosest distance to the above $1.876 \AA$. There exist endless,
symmetrical chains, exhibiting a typical bridge angle of about 150°, provided that the $\mathrm{Mo}-\mathrm{O}_{\text {br }}$ distance is larger than about $1.88 \AA$. This is also true for $\left(\mathrm{pyH}^{+}\right)_{2}\left\{\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{H}_{2} \mathrm{O}\right]_{2} \mathrm{O}\right\}$ (Le Carpentier, Mitschler \& Weiss, 1972) with a symmetrical bridge distance of $1.917(7) \AA$ and an angle of $148.6(2)^{\circ}$.

(IV) Sums of bond order

The established diagram according to Fig. 3 makes it possible to calculate the sum of the bond orders for any Mo-O coordination polyhydron whose bond distances are known. The results for all known examples are shown in Table 13. We find, that all bondorder sums for tetrahedrally coordinated Mo lie in the range 5.97 to 6.53 with one exception in $\mathrm{Mo}_{18} \mathrm{O}_{52}$. The deviation from 6.0 is often within one σ_{BO}, in some cases within two σ_{Bo}. Only in MnMoO_{4} and $\mathrm{Gd}_{2}\left(\mathrm{MoO}_{4}\right)_{3}$ are the deviations higher. The sums of bond orders in peroxo compounds are in all cases extremely close to six. For accurately determined structures with Mo obviously in a well defined oxidation state, e.g. $\mathrm{MoO}_{3} .2 \mathrm{H}_{2} \mathrm{O}, \mathrm{MoO}_{3}$, the sums of bond orders are slightly below six. In compounds with a non-integer overall oxidation number, the bond sums vary considerably between the different coordination polyhedra and give average values fairly close to the formal (overall) oxidation number of the compound. This is the first proof of Kihlborg's earlier suggestion (Kihlborg, 1963/4e) that small changes of the oxidation state of Mo might be indicated by the change of the size of the distortion of the Mo-O coordination polyhedron.

Conclusion

A systematic description of the geometrical aspects of all Mo-O bonds has been developed. This could be done, because it has been possible to show that:
(a) All isolated and polymeric structural arrangements of Mo-O coordination can be expressed in terms of the fundamental coordination polyhedra of Fig. 1.
(b) All hexacoordinated Mo-O and partly Mo-O coordinated systems could be described by regarding parts of the total sets of ligands, especially the Mo-O and those $\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}$ bonds whose distances are strongly determined by contributions from π bonding.

All combinations of Mo-O distances around one central Mo atom can now be understood as a consequence of the following.
(i) All ligands are O which are in part $d \pi-p \pi$ interacting ($\mathrm{Mo}-\mathrm{O}_{t}$), or else the $d \pi-p \pi$ interacting ligand O has neighbouring non $-\pi$-interacting ligands (or $d \pi-d \pi$ interacting ligands) $\mathrm{P}, \mathrm{S}, \mathrm{Cl}, \mathrm{Br}$ and the π-bonding of the $\mathrm{Mo}-\mathrm{O}_{t}$ is thus strengthened.
(ii) Constraints are imposed by the types of ligand O atoms. Isolated O atoms give O_{t} or O_{br}, the latter possibly also containing π bonding, while O atoms belonging to ligand molecules give $\mathrm{O}_{\mathrm{br}}\left(\mathrm{Mo}-\mathrm{O}_{\mathrm{br}}>\sim\right.$ $2 \cdot 05 \AA$) which do not contain π bonding.

These two aspects determine the way in which the π-bonding system is distributed in detail over a maximum of four ligand atoms and, as a consequence, how far the actual Mo-O distances deviate from their 'characteristic' values as derived above.
As the results show, an understanding of Mo-O coordination including $\mathrm{CN} 4,5,6$ and 7 has been gained.

The application of the curve of Fig. 3 to the lower oxides of Mo offers a differentiation between the differently distorted octahedra (cf. Table 13) according to the different states of oxidation of the central Mo atom.

Note: The referee has informed the author that a $\mathrm{Mo}^{\mathrm{VI}_{1}}-\mathrm{O}$ distance/BO relation of the form $s=$ $1 \cdot 5(R / 1 \cdot 761)^{-5.45}$ has been derived (I. D. Brown \& K. K. Wu, private communication). This function would give a curve in Fig. 2 which would meet our curve at approximately point B, and decrease more at higher and less at lower BO's. We have tried to check the curve in the last region by calculating the sum of the BO in MoO_{2} (although Brown \& Wu do not claim that their curve is valid for $\mathrm{Mo}^{\mathrm{IV}}$ compounds) for which all the distances occur in this region. With the Brown \& Wu curve we obtain a value of $4 \cdot 40$ while for this work (cf. Table 13) the value is $3 \cdot 72$. Thus it seems that our curve might underestimate the BO at longer distances and overestimate it at shorter distances, while the curve of Brown $\&$ Wu might do the reverse.

References

Abrahams, S. C. (1967). J. Chem. Phys. 46, 2052-2063.
Abrahams, S. C., Bernstein, J. L. \& Jamieson, P. B. (1968). J. Chem. Phys. 48, 2619-2629.

Abrahams, S. C. \& Reddy, J. M. (1965). J. Chem. Phys. 43, 2533-2543.
adam, V. C., Gregory, U. A. \& Kilbourn, B. T. (1970). Chem. Commun. pp. 1400-1401.
Allcock, H. R., Bissell, E. C. \& Shawl, E. T. (1973). Inorg. Chem. 12, 2963-2968.
Atovmyan, L. O. \& Boki, G. B. (1963). Russ. J. Struct. Chem. 4, 524-530.
atovmyan, L. O., D'yachenko, O. A. \& Lobkovski, E. B. (1970). Russ. J. Struct. Chem. 11, 429-431.
atovmyan, L. O. \& Krasochka, O. N. (1970). Chem. Comтии. pp. 1670-1671.
atovmyan, L. O. \& Krasochka, O. N. (1971). Sov. Phys. Dokl. 16, 7-8.
atovmyan, L. O. \& Krasochia, O. N. (1972). Russ. J. Struct. Chem. 13, 319-320.
atovmyan, L. O., Krasochka, O. N. \& Rahlin, M. Ya. (1971). Chem. Commun. pp. 610-611.
atovmyan, L. O. \& Sokolova, Yu. A. (1969). Chem. Commun. p. 649.
Atovmyan, L. O., Sokolova, Yu. A. \& Tkachev, V. V. (1970). Dokl. Phys. Chem. Sect. 193/5, 968-969.

Atovmyan, L. O., Tkachev, V. V. \& Shishova, T. G. (1972). Dokl. Phys. Chem. Sect. 205/7, 622-623.

Beaver, J. A. \& Drew, M. G. B. (1973). J. Chem. Soc. Dalton, pp. 1376-1380.
Blake, A. B., Cotton, F. A. \& Wood, J. S. (1964). J. Amer. Chem. Soc. 86, 3024-3031.
Boorman, P. M., Garner, C. D. \& Mabbs, F. E. (1974). Chem Commun. pp. 663-664.
Böschen, J., Buss, B. \& Krebs, B. (1974). Acta Cryst. B30, 48-56.
Böschen, J. \& Krebs, B. (1974). Acta Cryst. B30, 17951800.

Brown, D. H. \& Jeffreys, J. A. D. (1973). J. Chem. Soc. Dalton, pp. 732-735.
Brown, D. H., Perkins, P. G. \& Stewart, J. J. (1972). J. Chem. Soc. Dalton, pp. 2243-2246.

Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A 29, 266-282.
Chatt, J., Kubota, M., Leigh, G. J., March, F. C., Mason, R. \& Yarrow, D. J. (1974). Chem. Commun. pp. 1033-1034.
Cotton, F. A. \& Elder, R. C. (1964). Inorg. Chem. 3, 397-401.
Cotton, F. A. \& Morehouse, S. A. (1965). Inorg. Chem. 4, 1377-1381.
Cotton, F. A., Morehouse, S. M. \& Wood, J. S. (1964). Inorg. Chem. 3, 1603-1608.
Cotton, F. A. \& Wing, R. M. (1965a). Inorg. Chem. 4, 867-873.
Cotton, F. A. \& Wing, R. M. (1965b). Inorg. Chem. 4, 314317.

Darriet, B. \& Galy, J. (1973). J. Solid State Chem. 8, 189-194.
Day, V. W. \& Hoard, J. L. (1968). J. Amer. Chem. Soc. 90, 3374-3379.
Delbaere, L. T. J. \& Prout, C. K. (1971). Chem. Commun. p. 162.

Dexter, D. D. \& Silverton, J. V. (1968). J. Amer. Chem. Soc. 90, 3589-3590.
Drew, M. G. B. \& Kay, A. (1971a). J. Chem. Soc. (A), pp. 1846-1850.
Drew, M. G. B. \& Kay, A. (1971b). J. Chem. Soc. (A), pp. 1851-1854.
Drew, M. G. B. \& Tomkins, I. B. (1970a). J. Chem. Soc. (A), pp. 22-25.

Drew, M. G. B. \& Tomkins, I. B., (1970b). Acta Cryst. B26, 1161-1165.
Edwards, A. J. \& Steventon, B. R. (1968). J. Chem. Soc. (A), pp. 2503-2510.

Efremov, V. A. \& Trunov, V. K. (1975). Sov. Phys. Crystallogr. 19, 613-615.
Eick, H. A. \& Kihlborg, L. (1966). Acta Chem. Scand. 20, 722-729.
Elzen, A. F. van der \& Rieck, G. D. (1973a). Acta Cryst. B29, 2433-2436.
Elzen, A. F. van der \& Rieck, G. D. (1973b). Acta Cryst. B29, 2436-2438.
Evans, H. T. (1968). J. Amer. Chem. Soc. 90, 3275-3276.
Fenn, R. H. (1969). J. Chem. Soc. (A), pp. 1764-1769.
Ferguson, G., Mercer, M. \& Sharp, D. W. A. (1969). J. Chem. Soc. (A), pp. 2415-2418.
Fischer, J., Ricard, L. \& Toledano, P. (1974). J. Chem. Soc. Dalton, pp. 941-946.
Florian, L. R. \& Corey, E. R. (1968). Inorg. Chem. 7, 722-725.
Gatehouse, B. M. \& Leverett, P. (1968). Chem. Commun. pp. 901-902.

Gatehouse, B. M. \& Leverett, P. (1969). J. Chem. Soc. (A), pp. 849-854.

Gatehouse, B. M. \& Leverett, P. (1970). J. Solid State Chem. 1, 484-496.
Gatehouse, B. M. \& Leverett, P. (1971). J. Chem. Soc. (A), pp. 2107-2112.

Gloviak, T. (1967). Thesis, Wrozlaw, cited by Atovmyan, D'yachenko \& Lobkovskii (1970).
Gonschorek, W. \& Hahn, T. (1973). Z. Kristallogr. 138, 167-176.
Graham, J. \& Wadsley, A. D. (1966). Acta Cryst. 20, 93100.

Grandjean, D. \& Weiss, R. (1967a). Bull. Soc. Chim. Fr. pp. 3044-3049.
Grandjean, D. \& Weiss, R. (1967b). Bull. Soc. Chim. Fr. pp. 3054-3059.
Grandjean, D. \& Weiss, R. (1967c). Bull. Soc. Chim. Fr. pp. 3049-3054.
Hedman, B. (1973). Acta Chem. Scand. 27, 3335-3354.
Hedman, B. (1974). Acta Chem. Scand. A 28, 591-592.
Ibers, J. A. \& Smith, G. W. (1964). Acta Cryst. 17, 190197.

Jeitschko, W. (1972). Acta Cryst. B28, 60-76.
Jeitschko, W. (1973). Acta Cryst. B29, 2074-2081.
Jeitschio, W. \& Sleight, A. W. (1973). Acta Cryst. B29, 869-875.
Kamenar, B., Penavić, M. \& Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41-44.
Kierkegaard, P. (1961a). Ark. Kem. 18, 553-575.
Kierkegaard, P. (1961b). Ark. Kem. 18, 521-532.
Kierkegaard, P. \& Holmen, S. (1964). Ark. Kem. 23, 213221.

Kierkegaard, P. \& Longo, J. M. (1970). Acta. Chem. Scand. 24, 427-432.
Kihlborg, L. (1963). Acta Chem. Scand. 17, 1485-1487.
Kirlborg, L. (1963/4a). Ark. Kem. 21, 357-364.
Kihlborg, L. (1963/4b). Ark. Kem. 21, 461-469.
Kihlborg, L. (1963/4c). Ark. Kem. 21, 443-460.
Kihlborg, L. (1963/4d). Ark. Kem. 21, 365-377.
Kihlborg, L. (1963/4e). Ark. Kem. 21, 471-495.
Kihlborg, L., Norrestam, R. \& Olivecrona, B. (1971). Acta Cryst. B27, 2066-2070.
Klevtsova, R. F. \& Klevtsov, P. V. (1971). Sov. Phys. Crystallogr. 15, 829-834; 16, 241-245.
Klevtsova, R. F., Kozeeva, L. P. \& Klevtsov, P. V. (1974). Sov. Phys. Crystallogr. 19, 50-53.

Knöpnadel, I., Hartl, H., Hunnius, W. D. \& Fuchs, J. (1974). Angew. Chem. 86, 894-895.

Knox, J. R. \& Prout, C. K. (1969a). Acta Cryst. B25, 1857-1866.
Knox, J. R. \& Prout, C. K. (1969b). Acta Cryst. B25, 2281-2285.
Kobtsev, B. M., Kharitonov, Yu. A., Pobedimskaya, E. A. \& Belov, N. V. (1968). Sov. Phys. Dokl. 13, 193-195.

Kojıć-Prodić, B. Ružić-Toroš, Z̃., Grdenić, D. \& Golič, L. (1974). Acta Cryst. B30, 300-305.
Kopwillem, A. \& Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2184-2186.
Krebs, B. (1972). Acta Cryst. B28, 2222-2231.
Larking, I. \& Stomberg, R. (1970). Acta Chem. Scand. 24, 2043-2054.
Larking, I. \& Stomberg, R. (1972). Acta Chem. Scand. 26. 3708-3722.
Le Carpentier, J. M., Mitschler, A. \& Weiss, R. (1972). Acta Cryst. B28, 1288-1298.

Le Carpentier, J. M., Schlupp, R. \& Weiss, R. (1972). Acta Cryst. B28, 1278-1288.
Leciejewicz, J. (1965). Z. Kristallogr. 121, 158-164.
Linnros, B. (1970). Acta Chem. Scand. 24, 3711-3722.
Magarill, S. A. \& Klevtsova, R. F. (1972). Sov. Phys. Crystallogr. 16, 645-648.
Magarill, S. A., Klevtsova, R. F. \& Bakakin, V. V. (1975). Sov. Phys. Crystallogr. 19, 539-540.

Manojlović-Muir, L. (1971). J. Chem. Soc. (A), pp. 27962800.

Manojlović-Muir, L. \& Muir, K. W. (1972). J. Chem. Soc. (A), pp. 686-690.
Mattes, R. \& Müller, G. (1973). Naturwissenschaften, 60, 550.

Mattes, R., Müller, G. \& Becher, H. J. (1972). Z. anorg. allgem. Chem. 389, 177-187.
Mumme, W. G. \& Watts, J. A. (1970). J. Solid State Chem. 2, 16-23.
Park, J. J., Glick, M. D. \& Hoard, J. L. (1969). J. Amer. Chem. Soc. 91, 301-307.
Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
Peytavin, S. \& Philippot, E. (1973). Cryst. Struct. Commun. 2, 355-357.
Pierce, J. W., McKenzie, H. L., Vlasse, M. \& Wold, A. (1970). J. Solid State Chem. 1, 332-338.

Pierce, J. W. \& Vlasse, M. (1971). Acta Cryst. B27, 158163.

Porai-Koshits, M. A., Aslanov, L. A., Ivanova, G. V. \& Polynova, T. N. (1968). J. Strukt. Chem. 9, 401-405.
Scane, J. G. (1967). Acta Cryst. 23, 85-89.
Schröder, F. A. (1973). Habilitationsschrift, Universität Freiburg i Br.
Schröder, F. A., Scherle, J. \& Hazell, R. (1975). Acta Cryst. B31, 531-536.
Schulz, H. \& Schröder, F. A. (1973). Acta Cryst. A29, 322-333.
Seleborg, M. (1966). Acta Chem. Scand. 20, 2195-2201.
Seleborg, M. (1967). Acta Chem. Scand. 21, 499-504.

Serezhinin, V. N., Chuvaev, V. F., Kovba, L. M. \& Trunov, V. K. (1973). Dokl. Chem. 210, 476-479.
Serezhiin, V. N., Kovba, L. M. \& Trunov, V. K. (1973a). Sov. Phys. Crystallogr. 18, 323-325.
Serezhkin, V. N., Kovba, L. M. \& Trunov, V. K. (1973b). Sov. Phys. Crystallogr. 18, 603-605.
Serezhkin, V. N., Kovba, L. M. \& Trunov, V. K. (1973c). Sov. Phys. Crystallogr. 18, 689-691.
Serezhiin, V. N., Kovba, L. M. \& Trunov, V. K. (1974). Sov. Phys. Crystallogr. 19, 231-233.
Shannon, R. D. \& Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.
Shimao, E. (1967). Bull. Chem. Soc. Japan, 40, 1609-1613.
Smith, G. W. \& Ibers, J. A. (1965). Acta Cryst. 19, 269275.

Sıöbom, K. \& Hedman. B. (1973), Acta Chem. Scand. 27, 3673-3691.
Spivack, B. \& Dori, Z. (1973). J. Chem. Soc. Dalton, pp. 1173-1177.
Spivack, B. \& Dori, Z. (1974). J. Less-Common Met. 36, 249-254.
Stephenson, N. C. (1966). Acta Cryst. 20, 59-66.
Stephenson, N. C. \& Wadsley, A. D. (1965). Acta Cryst. 18, 241-247.
Stevenson, D. L. \& Dahl, L. F. (1967). J. Amer. Chem. Soc. 89, 3721-3726.
Stomberg, R. (1968). Acta Chem. Scand. 22, 1076-1090.
Stomberg, R. (1969). Acta Chem. Scand. 23, 2755-2763.
Stomberg, R. (1970). Acta Chem. Scand. 24, 2024-2036.
Stomberg, R., Trysberg, L. \& Larking, I. (1970). Acta Chem. Scand. 24, 2678-2679.
Strandberg, R. (1973). Acta Chem. Scand. 27, 1004-1018.
Strandberg, R. (1974). Acta Chem. Scand. A 28, 217-225.
Villa, A. C., Coghi, L., Manfredotti, A. G. \& Guastini, C. (1974). Cryst. Struct. Commun. 3, 551-554.

Wilhelmi, K. A. (1969). Acta Chem. Scand. 23, 419-428.
Åsbrink, S. \& Brandt, B. G. (1971). Chem. Script. 1, 169181.

[^0]: * Part XIII: Z. Naturforsch. (1973). 28b, 216.
 \dagger Extended part of the Habilitationsschrift of F. Schröder, Lehrstuhl I für Anorganische Chemie der Universität, Freiburg i. Br.. June 1973.

[^1]: * The tables in this paper do not include any of the Mo-O distances obtained for the following structures: $\mathrm{K}_{0.26} \mathrm{MoO}_{3}$ (Stephenson \& Wadsley, 1965); $\mathrm{K}_{0.28} \mathrm{MoO}_{3}$ (Graham \& Wadsley, 1966); $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} .4 \mathrm{H}_{2} \mathrm{O}$ (Shimao, 1967; Evans, 1968); $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{H}_{6}\left(\mathrm{CeMo}_{12} \mathrm{O}_{42}\right) \cdot 12 \mathrm{H}_{2} \mathrm{O}$ (Dexter \& Silverton, 1968); $\mathrm{LiCd}\left[\mathrm{MoO}_{4}\right] \mathrm{OH}$ (Kobtsev, Kharitonov, Pobedimskaya \& Belov, 1968); $\mathrm{Na}_{0.9} \mathrm{Mo}_{6} \mathrm{O}_{17}$ (Stephenson, 1966);
 $\left(\mathrm{NH}_{4}\right)_{4} \mathrm{Mo}_{4} \mathrm{O}_{11}\left(\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{5}\right)_{2} .6 \mathrm{H}_{2} \mathrm{O}$ (Porai-Koshits, Aslanov, Ivanova \& Polynova, 1968); $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{3} \mathrm{~F}_{2}$ (Mattes \& Müller, 1973) $\mathrm{KR}\left(\mathrm{MoO}_{4}\right)_{2}\left(\mathrm{R}^{3+}=\mathrm{Al}, \mathrm{Sc}, \mathrm{Fe}\right)$ (Klevtsova \& Klevtsov, 1971); $\mathrm{U}_{2} \mathrm{MoO}_{8}$ (Serezhkin, Kovba \& Trunov, 1973a); $\gamma-\mathrm{U}_{3} \mathrm{Mo}_{20} \mathrm{O}_{64}$ (Serezhkin, Kovba \& Trunov, 1973b); $\gamma-$ $\mathrm{U}_{3} \mathrm{Mo}_{20} \mathrm{O}_{64}$ (Serezhkin, Kovba \& Trunov, 1973c);
 $\mathrm{UO}_{3} .2 \mathrm{MoO}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ (Serezhkin, Chuvaev, Kovba \& Trunov, 1973); $\left[\left(\mathrm{CO}_{3}\right) \mathrm{Mo}(\mathrm{CO})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]_{2}$ (Chatt, Kubota, Leigh, March, Mason \& Yarrow, 1974); $\mathrm{K}_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Gatehouse \& Leverett, 1968); $\mathrm{K}_{x} \mathrm{~V}_{x} \mathrm{Mo}_{1-x} \mathrm{O}_{3}$ (Darriet \& Galy, 1973). $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ (Knöpnadel, Hartl, Hunnius \& Fuchs, 1974); $\mathrm{MoO}_{2}\left(\mathrm{O}_{2} \mathrm{C}_{5} \mathrm{H}_{7}\right)_{2}$ (Kamenar, Penavić \& Prout, 1973); $\mathrm{K}_{5} \mathrm{La}\left(\mathrm{MoO}_{4}\right)_{2}$ (Efremov \& Trunov, 1975); $\left[\mathrm{MoO}_{2} \mathrm{Cl} .2 \mathrm{DMF} \mathrm{O}_{2}\right.$ and $\mathrm{K}_{2}\left[\mathrm{MoO}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$ (Atovmyan, Sokolova \& Tkachev, 1970); $\mathrm{Li}_{8} \mathrm{Mo}_{10-x} \mathrm{O}_{34-3 x}$ (Magarill, Klevtsova \& Bakakin, 1975); $\mathrm{H}_{2} \mathrm{Mo}_{2} \mathrm{O}_{5} \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{6} .3 \mathrm{H}_{2} \mathrm{O}$ (Hedman, 1974); $\mathrm{UMo}_{10} \mathrm{O}_{32}$ (Serezhkin, Kovba \& Trunov, 1974). These structures can be shown to be in error and/or of poor accuracy.

[^2]: * There is one further noticeable result: in only three of the compounds listed in Tables 1, 2 and 3 do the $\mathrm{O}_{\text {r }}$ show electrondonating properties in so far as they are involved in hydrogen bonding. These are $\mathrm{MoO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Åsbrink \& Brandt, 1971), $\alpha-\mathrm{MoO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Böschen \& Krebs, 1974), and
 $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{MO}_{8} \mathrm{O}_{27} .4 \mathrm{H}_{2} \mathrm{O}$ (Böschen, Buss \& Krebs, 1974) where comparatively long $\mathrm{Mo}-\mathrm{O}_{\mathrm{t}}$ distances have been found. These O_{t} are involved in complicated hydrogen-bonding systems.

